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ABSTRACT

The new approach to structural reliability analysis based on
order statistics and the expected time to first failure in a fleet
of specified magnitude, that has been first proposed in a previous
report AFML-TR-66-37 is developed in more detail and applied to
structures subject to progressive fatigue damage. It is shown that
the concept of fatigue sensitivity developed in WADD Tech. Rep. 61-
53 is improved by relating it to the expected time to first failure
rather than to the expected time to failure. The modified fatigue
sensitivity factor becomes an effective parameter for the correla-
tion of ultimate load and fatigue design and for the classification
of fatigue sensitive structures.

This abstract is subject to special export controls and each transmittal to
foreign governments or foreign nationals may be made only with prior
approval of the Metals and Ceramics Division (MAM), Air Force Materials
Laboratory, Wright-Patterson Air Force Base, Ohio 45433.
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I. Introduction

A fundamental difference in the approach to the life and
reliability estimate of easily maintainable, multi-element elec-
tronic systems and of major structures the performance of which
depends on a relatively small number of critical, and essential-
ly "non-maintainable" elements results from:

(a) the different implication of the concept of "failure",

(b) the large difference in the possible number of test
replications to provide an estimate of "mean life", and

(c) the basic difference in the procedures of reliability
demonstration,

In electronic systems failure in operation is considered a
contingency, reducible by a program of periodic replacement of
components to an acceptable condition defined by a small number
of failures. The mean time to failure of elements, on the reli-
able estimate of which the effective design of the replacement
program depends, is obtained from tests with a sufficiently large
number of replications. For a major structure failure is not a con-
tingency but an emergency. Since the consequences of even a single
failure are usually severe, the concept of "mean life", with its
tacit implication of a high percentage of failed structures has
no relevance to design. It can also not be reliably estimated
from the single test or the very small number of test replications
that are technically and economically feasible. Therefore the
approach to reliability demonstration is quite different: in
electronic systems reliability demonstration of the whole system by

computation based on experimentally demonstrated component reliability



is acceptable, while even the crudest estimate of the reliability
of a full-scale structure requires a life test of this structure
itself, supplemented by knowledge, accumulated in multiple tests
of large structural elements, of the expected range of scatter.

This difference in approach must be reflected in a difference
in methodology. While in reliability analysis of electronic
systems linear functional models of utmost simplicity, such as
the simple chain or parallel chains, form the substructure upon
which probabilistic models of different levels of sophistication
are superimposed, functional models representing structural failure
are by the nature of the physical process highly nonlinear and re-
dundant. Sophistication in the superimposed probability model would
therefore compound the difficulties of analysis to an extent that
does not seem warranted by the obtainable results in view of the
severely limited number of experimental data available for their
verification. Since under such conditions reliability demonstration
must rely on a combination of full scale testing and performance
during early life, preferably under operational conditions of more
than normal severity, the expected time to the first failurel seems
to be a concept that is more relevant to the life estimate and the
reliability demonstration of major structures, in the design of
which the avoidance of even a single catastrophic failure represents
the overriding design criterion, than the conventional concepts of
expected (mean, median or modal) life and scatter factor. Obviously,
failure need not necessarily be defined as catastrophic, but can
refer to a designated level of damage. 1In this case the expected
time to the second failure as well as the expected interval between
first and second failures become useful as additional characteristics
from which not only the "expected life" might be estimated, but which
might serve to verify the validity of various possible assumptions

concerning the form of the distribution function of fatigue 1life.



The concepts of the expected time to the first failure as well as
that of the interval between the first and second failures or that
of the time to the second failure also have the practical advantages
that

(i) they can be actually demonstrated in operation,which is
impossible for the mean time to failure,

(ii) they are strongly affected by differences between different
distributions of life so that they automatically reflect the differences
between different failure mechanisms which lead to different distrib-
utions of times to failure, and

(iii)they depend on the size of the group of structures to be
considered.

It seems, therefore, to be of practical interest to study the
relation between these concepts and the conventional reliability
concepts of mean time to failure and scatter range, because of the
advantage of a structural reliability analysis based on order statistics

rather than on conventional statistics.

II. Dpistribution Functions of Physical Significance

In both materials tests and life tests of structures the number
of test replications that is technically and economically feasible
precludes the derivation of the distribution function of fatigue
lives from observations by methods of statistical inference. It is
therefore necessary to devise, on the basis of relevant physical
arguments, probabilistic models which produce distribution functions
that are germane to the physical phenomenon, so that their use can
be justified in the extrapolation from small numbers of test results
to probability levels as far removed from the range of test results
as the levels that are significant in reliability analysis. However,

it should be realized that only very simple physical arguments can



be translated into probability statements which result in a charac-
teristic distribution function.

Thus, for instance, the argument, based on observations of step-
like crack propagation under cyclic loading, that each new crack ele-
ment can be considered a partial static rupture, independent of pre-
ceding ruptures, leads to the conclusion that cracking is a Poisson
processz. The probability of failure associated with the exceedance
of a finite number r of elementary cracks is thus given as the sum of

a finite number of Poisson terms

r -L/T «x
P{x >r} =T p(x) = e E g (/7% = p(t) (2.1)
(@) o)

where T is the return period of the elementary crack process of
probability p = T » and x the number of occurrences in a given time
interval t. The time to failure as a function of r (mortality function)

is obtained by differentiation with respect to t of P*=[1-P(t)]

dp*/dt = rlT (t/T) T e e (2.2)
which, with x =t, a =r + 1, 2 = 1 and T'(a) = (a=1)!=r! is the
Gamma function

a
P(x) = poy x* e M (2.3)

Alternatively, if it is assumed that an elementary crack length K

€ is exponentially distributed, the momentary crack length £ = Eei
follows a Gamma distribution3 for the crack length x = £ with 1

a =k and A = 1/¢, where & is the mean elementary crack length,
since this is the distribution of the sum of k random variables,
each of exponential distribution. Since time to failure can be
associated with the time to attain a certain crack length, since
this is the distribution of the sum of k random variables, each of
exponential distribution. Since time to failure can be associated
with the time to attain a certain crack length, both physical argu-

ments lead to Gamma distributions for the time to failure.



The physical assumption of an increase of the rate of cracking
with increasing number N of load applications and thus with increasing
time t can be translated into the probabilistic requirement of a risk
function or "hazard rate", increasing with increasing t. The simplest

form of this function satisfying such assumption

t a-1

h(t) =a (3) a >1 (2.4)

where v is a measure of the central tendency of t leads to the extreme

value distribution

Q
p* (x) = o X/V) (2.5)

with x = t; the scale parameter o is an inverse measure of the scatter
of x or t, which implies that the more rapidly the increase of the
risk function the narrower the associated scatter of lives. Eq. (2.5)
represents the Third asymptotic distribution function of the shortest
lives4 in large samples of well-behaved statistical populations of
unknown distribution, also known as the Weibull distribution.

Since experiments have shown that a certain "incubation period"
to’ the minimum lifes, is needed to start the process of crack propa-

gation, a more appropriate formulation of the hazard rate

bl a=1
h(N) = a [V-:—t"] a>1 (2.6)
(o)

leads to an extreme value distribution with lower limit

x-x 1%
(e}
v-X
o

P*(x) = 2 (2.7)




with x =t and x =t .,
o o

The wide use of the Logarithmic Normal distribution for fatigque
lives is, in general, based on arguments of expediency (use of tables
and methods of estimation developed for Normal distribution), rather
than physical or probabilistic reasoning, although an argument that
the damaging effect of each load application is proportional to the
total damage produced by the preceding load cycles can be used to
justify the logarithmic normal distribution of fatigue lives6. The
application of the central limit theorem to a product of statistical
variables provides further justification, although, physically, the
above arguments do not carry conviction.

The hazard functions of the three distribution functions are
quite dissimilar: for the Gamma distribution it increases asymptotically
toward a constant value associated with chance failures, for the Weibull
distribution it increases monotonicaly, for the logarithmic normal it
first increases at decreasing rate, but later decreases very slowly
towards zero. However, an experimental demonstration of the tendencies
of these functions is just as impractical as a demonstration of the
forms of the associated reliability or frequency functions themselves
(Fig. 1) since the significant differences in their trend only appear
in the central range of lives.

Certain physical assumptions arising from considerations of
structural failure phenomena lead to composite distribution functions
of various types. Thus, for instance, the assumption that fatigue
failure of a structure subject to variable load intensities is
essentially an ultimate load (chance) failure of the structure that
has been progressively weakened by propagating fatigue cracks7 may
be expressed by replacing the constant "return period" of ultimate
load failure v = l/Pf in the exponential distribution characteristic

for chance failures



_ =(x/v)
= £

P* (x) (2.8)

by a decreasing function v(x) of x reflecting the progressive
deterioration by fatigue of the initial ultimate load resistance R.
The probability of ultimate load failure of the undamaged structure
is obtained from the distribution function P(v) of the safety factor
v = R/S, where R and S denote respectively the resistance and the
load considered as statistical variabless, at y =1, or Ply)= P(1)=Pf.
Various assumptions could be made concerning the form of the function

v(x). Of these the function
X, n .
vix) = v [1-(3)7] > o with n > 1 (2.9)

seems best suited to reproduce actual conditions. The parameter u
denotes the time x at which the resistance R has been completely
destroyed by fatigue cracking. Obviously the time u is a function

of the operational load spectrum that causes fatigue, of the fatigue
resistance of the structure which, in turn, depends on the fatigue
performance of the material and on details of the structural design,
and on the maintenance, repair or replacement program as a result of
which the time u is periodically extended. Moreover u is not a constant
but a statistical variable, since it represents the fatigue life of
the structure subject to the normal operational load spectrum alone,
independently of (extreme) load spectra that are likely to produce
actual failure (thunderstorm gusts, low-level operations, etc.). In

Eq. (2.9) this variable is replaced by its expected (mean) value. The
power n > 1 reproduces the observation that the effect of fatigue
deterioration of the static resistance proceeds at first very slowly
but accelerates sharply as x approaches u. Introducing Eq. (2.9) into

(2.8) the distribution function is obtained

x,n,-1
-x/v) [1-(5)"] 5 16}

P*(x) = 2



The risk function associated with Eq. (2.10) follows from

. g /) 1+(n-1) ()"
h(x) = - = 4nP* = - —m——— =
x - 5™ [1- (5"~
u u (2.11)
Developing the exponent of Eq. (2.10) into a power series
% sy 34 X X x2n X
(;l [I={=) ] = (;l L+ G+ @G+ .. 1 () <1 -

which for values n > 1 converges rapidly in the region of practical

significance (E) < 0.5, Eq. (2.10) can be written in the form

n+l 2n+1
_(f) - }(5) - l(f)
v @ u @ u
P*(x) = e © e .
1 an+l
- a (a)
— f— *
m® ﬂum(x) (2.13)

for (x/u) <1 and m = 0,1,2,..., where the "fatigue ratio" ¢ = (vo/u)
relates the return period of ultimate load failure to the expected
time to complete loss of resistance caused by fatigue.

The function P*(x) in Eq. (2.13) is a product of extreme value
distributions P;(x) of the type of Eq. (2.5) with am = mn+l. Since

am is inversely proportional to the standard deviation om(loglot) = 6m



6m = n/2.303am/6 (2.14)

it follows that the dispersion of the functions Qm(x) decreases with
increasing m,
The risk function associated with Eq. (2.13)
a mn+1 mn

d -1_.,x X
h(x) = == LnP* (x) =ix @ I§(a) i p? (mn+1) (G) _—

Il
<=

X . ’ . : . .
for (G)< 1, is an increasing function of x, resulting from linear
superposition of processes of progressive damage. For large values

of n the series converges fast enough to justify the approximation

1
v

1 X2 1 xn
h(x) £ 5 (1 + (n+l) (3) ] = + (n+1) T G)
o 1

o i (2.16)

which represents the simple superposition of a chance risk and a

progressive damage risk function with expected life u, =u nT%/¢ > u,
P*(x) is expressed by the first two terms of Eq. (2.13):
1 1 n+l
- =(x/u) - =(x/u)
P*(x) = ¢ © e © (2.17)

Distribution functions of the general type of Eq. (2.13)

*
Pr(x) =m B (x) (2.18)

arise 'in the reliability analysis of multicomponent structures or of
structures subject to a multitude of independent effects. The number
m of product terms may represent the number of components surviving

at time x or the number of effects acting at time x on the surviving

structure.



III. Application of Order Statistics

Certain order statistics ofseveral distribution functions are
evaluated and compared with the expectation that the results will
provide a basis for comparison of tests and ovservations on structures
and structural parts which is more effective than conventional
statistical methods, as well as a basis for the establishment of a
rational and administrable procedure of reliability demonstration.

It is instructive to evaluate first the order statistics for
the exponential distribution used to represent chance failures.

The expected value of the m-th order statistics of a sample

of size n from an exponential population specified by Eq. (2.8)

= (x/v)
£

P(x) =1 - P*(x) =1 - (3.1)
and
1 -(x/v
px) = 1 o (/Y (3.2)
where v is the expected mean time to failure
m
E(Xm)n =V E n—i+l
i=1 (3.3)
Hence
1 1 1
and
E(x,-x;) = E(x)) - E(x;) = —=
27% ) = uix, AP Taa ¥ (3.5)

When the sample size is moderate or large, the expected times to first
and second failure are quite short, much shorter, as will be seen, than
these times for any of the considered distributions of fatigue life.
This is an important fact when design criteria for ultimate load
failure are compared with design criteria for fatigue. If avoidance

of even a single catastrophic failure is a design requirement, expected

10



times to first failure must replace the mean times to failure as
significant design criteria. In the case of ultimate load failure

the requirement of an expected time to first failure of x. = 100,000 hrs,

1
in a fleet of n = 1000 units would imply a design mean time to failure

for the fleet of v = lO8 hrs., producing a reliability function -3
P*(x) = exp(—x/108) with a probability of failure of PF =1 - e_lo

~10-3 at x = x, = 105. The expected interval between the first two
consecutive failures is about lO5 hrs,

For a distribution function P(x) and frequency function p(x) the
probability that no failure will occur in the interval between o and X
and one of a sample of size n will fail in the interval between x and

(x+Ax) is given by the expression

P(X)=n[1-P(x)1"™" p(x) ax (3.6)

The expected time to the first failure is the expectation of Eq. (3.6),

or -
EX1 = I T x[l-P(x)]n—lp(x)dx
(3.7)
Similarly, the time to the second failure
L n-2
EX, = n(n-1) | xP(x)[1-P(x) 1" %p (x) ax (3.8)

-0
The expected value of the interval between the first and second failures

E(X)=X)) = EX, - EX, (3.9)

The variance of X, is obtained from

2 2
var x,= EX," - (EX,)

1 (3.10)

where

EX, = nT x2 [l—P(x)]n-lp(x)dx (3.11)

-0

11



The variance of X

2
2 2
= EX =
var X, 2 (EX,) (3.12)
where
9 2 n-2
ex,? =n(-1)[ x"Pe)[1-P(x)]7 P (x)ax
—% (3.13)
The coefficient of variation of P(x)
v = /Var X/EX (3.14)

X

. 5 . . ;9 ’
For the Third Asymptotic Extremal Distribution according to Eq.

(2.5) with “
o - (/%)

P(x) =1 - P*¥(x) =1 - (3.15)
and
a
p(x) = ez T (3.16)
evaluation of Egs. (3.7) to (3.13) produces the expressions:
_ =1/
EX1 = vn r(1+1/a) (3.17)
2_ 2 =2/ua
EXl =v n I (1+2/a) (3.18)
EX2 = VF(l+l/a)[n(n-l)—l/a—(n—l)n—l/a] (3.19)
2 2 -2/q -2/a
EX, =V r(1+2/a)[n(n-1) -(n-1)n ] (3.20)
while
EX = vl (1l+1/a) (3.21)
and
var X= [ (1+2/a) - I‘2(l+l/'a)]v2 (3.22)

12



Hence

EX. = n EX (3.17a)

By =a - B (3.18a)
_ =2/a
Var Xl— n vVar X (3.23)
and therefore
-1
o(xl) = n /do(x) (3.24)

The coefficient of variation

Vo = c(xl)/EXl = o(X)/EX (3.25)
1

is therefore identical with that of the parent population.
Egs. (3.17a) to (3.24) can also be used to predict the parameters
of the parent population from observations of the times to first

failure in samples of size n

1 (3.17b)
and

g(X) = n o(X (3.24a)

If Eq(2.7) is considered with the lower bound (minimum 1life)

specified as a fraction of the characteristic life X = Bv so that

_[X=Bv
v(1-B)
P*(x) = - (2.7a)
the transformation
X =Y + pv (3.26)

13



reestablishes the form of Eq. (3.15) with respect to the variable Y

_

P(y) = 1-P*(y) =1 (3.27)

where w = v(1-B). Hence Egs. (3.17) to (3.20) are valid with respect
to the variable Y and the following expressions can be written for the

order statistics of Eq. (3.27):

-1/a

EYl = n r(1+1/a) (3.28)
or, since

Y = XPV (3.26a)
the expectation

EX. = pviv(l-g)n YOr(1+1/a) = pv+(1-)EX, (©
1 1 (3.29)

where Exl(o) is the value of EXl for X, = 0 given by Eq. (3.17).
Similarily

EX. = + (1-B)EX {2
= PV PIEX, (3.30)
where EX2 is given by Eqg. (3.19). The expected value of the interval

(Xz—xl) according to Egs. (3.9), (3.29) and (3.30)

B (X,7Xy) = (l'B)EExz(O)' Exl(O)] (3.31)
while
EX = Bv + v(1-8) T'(1+1/a) (3.32)
Because of Eq. (3.26a)
var X, = Var Y (3.33)

and

14



var (X ,,7%) = Var (¥ .,-%) (3.34)

In Fig. 2 the ratios EXl/EX, E(Xz—xl)/Ex, Var xl/(EX)2 and
Var (X2-Xl)/(EX)2 are plotted as functions of the coefficient of
variation vk of the distribution for X = 0 and XO= 0.1 v (p=0.1)
and sample sizes n = 3, 20, 50, 200 and 1,000. The effect of the
existence of a minimum life is quite pronounced although the assumed
value of B=0.1 is moderate. That a value of this order of magnitude
can be expected even within the range of short and moderate fatigue
lives is suggested by Fig. 3 which shows values of xo= No evaluated
from fatigue tests on aluminum specimens 10 and fitted by a straight
line, compared with the relation No= 0.1v . O.Ilﬁ, assuming that for
3 <a < 4 the relation N = v[(1+1/a) ~ 0.9v is a good enough approx-
imation. If the reliability analysis is performed under the convenient
assumption Xo = 0(p=0), the actual existence of a minimum life provides
a significant additional margin of safety. If the load spectrum is
specified in terms of the percentages pi of time during which the struc-
ture is subject to load amplitudes of certain (constant) intensities
Si’ each of which, if acting alone, would produce failure at a specified
mean time Exi’ and if the distributionsof the times Xi are assumed ex-
tremal with characteristic values Yi’ xoi= 0 and the same coefficient of
variation (ai= @), the reliability function under the assumption of no

interaction between load intensitiesis of the form

pP.X o P.X a Q
) = ngexp (- o= )= e [T(3) ] e (-3)
8 1

(3.35)
-Q, p; @
where w = ;(;—) 5 w is the characteristic time to failure under the
1 .
combined 1oadiﬁg. For a = 1., Eq. (3.35) implies linear damage accumu-

lation. In the case of interaction between load intensitieg the values

15



v, are reduced by interaction factors wi>l the values of which increase
with decreasing load intensity. In this case the characteristic value

w is obtained from the relation

P, W,
-Q, i i
e e (5

(3.36)

As a result of this interaction the damaging effect of low load inten-
sities is considerably magnified. The expected time to first failure
in a sample of size n as well as the other order statistics can be
obtained from Egs. (3.17) to (3.20) or from the diagrams in Fig. 2.

Eq. (3.7) cannot be evaluated in closed form for the reliability
function Eq. (2.17). Numerical evaluation within the range of validity
of its approximation of Eq. (2.10) (xl/u) < 1.0 for the exponents a =
n+1=2, 3, 4 the parameters ¢ = 10,100 and 1,000 and the sample size
n = 20, 50, 200 and 1,000 produces the values EX, in terms of u pre-

1
sented in Table 1:

Table 1.
n\9% 10 100 1000 Q
0.362
20 0.381
0.392 4

-4

0, L1717 0,836
50 0,186 0,820
0,190 0,811
0.045 0,361
200 0.049 0,380
0.049 0.392
0.007 0.088 0.568
1000 0.007 0.096 0.582
0.007 0.099 0.591

N w|w S oo ol w'w N (W [N
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The expected time to the first chance failure for the reliability func-

tion Eq. (2.8) with v = gu according to the first Eq. (3.4) is

EX;, = ~% v=>2u (3.37)
The values of the ratio (Exl/Exlc) are presented in Fig. 4 as a
function of Exlc‘ It can be seen that these values are practically
independent of n and of a. For values Ex1C < 0.2u the ratio is suf-
ficiently close to unity to justify the conclusion that under the as-
sumptions resulting in the reliability function Eq. (2.17) fatigue re-
duces the expected time to first chance failure only when ¢ < 0.2n or

u < 5v/n.

IV. Fatique Sensitivity

The reliability estimate of a structure is strongly affected by
its fatigue sensitivity. For fatigue insensitive structures the re-
liability estimate depends on adequate statistical correlation of the
carrying capacity of the structure with a spectrum of extreme loading
conditions, such as a thunderstorm or anextremal maneuver load spectrum. The
statistical variadbility of the initial carrying capacity has recently
been established on the basis of evaluation of industrial test data
on full-scale structural elements11 and spectra of extreme loading
conditions as well as their frequency ratio within the total operation-
al conditions can be reasonably well constructed on the basis of extra-
polation from flight records obtained under extremal conditions. The
reliability function of the structure for ultimate load failure can
therefore be derived on the basis of the assumed chance character of
this failure; its return period v = PF_l is obtained by evaluation of
the probability of failure of the structure from the correlation of
carrying capacity and load-spectrum.

When the structure is fatigue sensitive the dependence of the

momentary carrying capacity of the structure on its operational

history destroys the possibility of this simple correlation. The ob-
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servation that under variable load intensities fatigue failures in
tests as well as in operation occur at the highest load intensities
applied, justifies the assumption that the chance character of the
failure process can be retained; however, the reduction of the carry-
ing capacity as a function of the load-history must be introduced.
This leads to a reliability function of the type of Eq. (2.10) the
actual use of which is severely limited by the analytical difficulties
of its use. The proposed approximation Eq. (2.17) makes its use over
a limited range possible.

With respect to this reliability function the range of fatigue
insensitivity has been delimited by the values of the expected time
to first chance failure 0 < EXlC< 0.2u.

Thus, for a fleet size of n = 50 the condition for a fatigue in-
sensitive design is u > 0.lv while for n = 1000 u > 0.005v. 1Intro-
ducing as an example, EXlC = 2xlO5 hrs.for n = 1000 as an admissible
design value, the expected time to chance failure EXC = v= 2x108 hrs;
a fatigue-insensitive design therefore requires u > 10° hrs. For the
7

same value EXlC in a smaller fleet of n = 50 for which v= 10

the requirement for fatigue insensitive-design is again u > 10° hrs,

hrs,

Assuming therefore that the design limit load, considered as the high-
est load intensity of the fatigue spectrum, is determined by the re-
quirement u > lO6 hrs, independently of fleet size, the design ultimate
load intensity should be the higher the larger the fleet size. This
requirement obviously interferes with the constant ratio between ulti- a
mate and limit load on which conventional design is based.

If, for the sake of more convenient analytical manipulation, the
reliability function of a fetigue sensitive structure is approximated
by the extremal distribution Eq. (2.5) alone,while Eq. (2.8) is the
reliability function of the undamaged structure for ultimate load

failure, the range of fatigue insensitivity is delimited by the con-

dition that the expected time to first ultimate load failure Ex1C be

18



smaller than the time to first failure EX1F of the fatigue sensitive

structure. Considering Egs. (3.17a) and (3.4) the ratio between EX

1F
and EXlc considered as inverse fatigue sensitivity factor
-1 -1/a -1 (1-1/a)
f = =3 =
1 ExlF/Ex1 c =n EXF/Vn (EXF/EXC) n (4.1)
. (1-1/a) . .
since v = EXC. The values of n are given in Table 2 for n = 3,20,
50, 200, 1000 and a = 2, 3, 4.
Table 2
O 3 20 | so0 200 | 1000
2 1.7 4.5 751 14.2 31.6
3 2.1 7.7] 13.6 34.2 {100
4 2.3 9.4118.9 53.8 1179

These values are the ratios between the design values (EXC/EXF) neces-
>
t =
sary to ensure that EXlF Exlc’

signate a structure as fatigue-insensitive (fl < 1l). when the ratio is

higher the factor £

a condition that might be used to de-

1> 1 and the structure becomes fatigue-sensitive
since the expected time to the first fatigue failure is shorter than
that to the first chance failure. For n = 1000 at @ = 4 and for n =
50 at o between 2 and 3 these ratios are fairly close to those ob-
tained from Eq. (2.17) which, however, are practically independent of
a. Nevertheless the fact that the right order of magnitude of these
ratios in the range of the shape parameter 2 < a < 4 associated with
the range of significant values of the scatter of fatigue life 0.14 <
o(log XF) < 0.19 is obtained from Eq. (4.1) might justify the use of
this equation for the illustration of the significance of the concept
of fatigue sensitivity in an integrated design procedure.

If it can be assumed that an estimate of EXF under a cyclic load
spectrum pi(Si) is obtainable from a modified linear damage accumulation
rule
19
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il mExiF

where EXiF is the expected time to Ffailure in hours at the constant

load amplitude Si’ taken either from an average S-N diagram by con-

verting the mean number of cycles Ni = mEXiF into hours with the aid
of the expected number m of cycles per hour, in which case k < 1, or

; . .13 . .
from an S-N diagram corrected for stress-interaction 5 in which case

k =1, so that

-1
Py

EXp = k [ 2 EX. ] (4.3)

1 1F

the design ratio
Py

= = P

f = EX_/EX_ [ = ]/ kP, (4.4)
1 1F

where PF is the probability of ultimate load failure per hour of

flight. The values P, EXi and k are determined by the fatigue load

spectrum and the fatigue beiavior of the material in the structure,
while PF combines the effects of ultimate load spectrum and ulti-
mate carrying capacity of the structure. The "design ratio" £ thus
reflects the combined principal design parameters. Since Eq. (4.1)

can be written in the form

f = £ n(l - l/a) (4-5)
1
it takes the form
£ = n(l - 1/(1) (4-6)
for the critical value f1 = 1. The structure is fatigue sensitive

when fl > 1 and therefore f 1larger than the values tabulated in
Table 2 and fatigue insensitive when fl <1 so that f is smaller
than these values.
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When a structure has been designed for ultimate load with a
probability of failure for a single load application i and with
an associated probability of failure per hour PF = mp, = [EXC]—l,
where m is the number of load application per hour in the range of
the ultimate load spectrum, Egs. (4.4) and (4.5) can be used to deter-

mine its fatigue sensitivity factor f. when the fatigue load spectrum

and the fatigue performance of the material in the structure subject
to this spectrum are known; conversely, the maximum intensity of the
fatigue-load spectrum can be determined for which the condition f1=l
is satisfied. Thus, for instance for a fleet size n of structures
designed for ultimate load with probability Pp the condition of fa-
tigue-insensitivity £, s 1 takes the form f£f b3 n(l— 1/a) or

P; < 1 -

EXiF <4 1/a) anp

(4.7)

He T

Assuming an average of 20 gusts per mile of flight in thunder-
storm turbulence all of which are of an intensity that can be con-
sidered to fall within the extreme range from which the ultimate load
intensity is extrapolated, and assuming further that flight through
thunderstorm turbulence makes up about 0.l percent of operational
flight time14 with average velocity through turbulence of 400 miles,
the expected number of applications of loads belonging to the ultimate
load spectrum is m = 8 gusts per hour of (total) flight time. For n =

1000, a = 4, P, = 10~ and k ~ 0.5 Eg. (4.7) expresses the condition

p. & I} -
= =179 x 0.5 x 8 x 10]° = 7.15 x 10~°

1

H- 1]

For a fatigue load spectrum of five load levels: S_ with p4 =

5
10™* and EXgp = No/m, S4 with py = 107> and EX,, = 10Ng/m, S3 with

Py = 1072 and EX3 = 100Ng/m, S, with pp = 107! and EX,p = 1000N;/f

21



and S, with p;, = 0.889 and EX;, = 104N5/E1 the left side of Eq. (4.7)

becomes p
Al -4_ -1

EX. = 4,889 x 10 mN5
i1F

e

The number m can be estimated from the assumption of an average of 0.1
gusts that produce fatigue damage per mile of normal flight at 400 miles
per hour or m = 40 such gusts per hour. Hence fatigue insensitivity of
the design requires that the number of cycles to failure at the highest
load level 85 should be Ng 2 2700 cycles or EXsp = 68 hrs. 1In a total
estimated life of 25,000 hrs. this load intensity is actually applied
during 2.5 hours or an expected number of 100 times; Sg is therefore
only somewhat lower than the"limit load" defined by an expected fre-
quency of occurence of about 10,if the structure is to be fatigue in-
sensitive with respect to the first failure. This conclusion would
provide some theoretical support to the rule of thumb used in in-

15

dustry that a structure or structural part will be fatigue insensi-

tive in operation if it can support about 3000 repetitions of the limit
load.

The fatigue sensitivity design factor f is a function of n accord-
ing to Eq. (4.5). Therefore the fatigue sensitivity factor fl also
changes with fleet size. For the considered design conditions the
ratio which is fl = 1 for n = 1000 is increased for n = 50 by 100/13.6
to f1 = 7.3 so that EX1p = 0.136EXC: the smaller the fleet the more fa-
tigue sensitive it is with respect to first failure. This only means
that the smaller the fleet the more likely it is that the first failure
is not an ultimate load failure but a fatigue failure. If fatigue sen-
sitivity were defined with respect to the ratio of expected times f =
1.0 rather than with respect to f;, the fatigue sensitivity £, =

n~ (1-1/a) 0: the structure would always be highly fatigue-insensitive.
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For this condition, however, the highest load level S5 of the con-

sidered spectrum and n = 1000 would be associated with Nl 25 x 105
and thus be far below the limit-load.
Definition of fatigue sensitivity by the ratio of the risk func-

tions associated with Egs. (2.5) and (2.8)]‘6

a-1
rF v <t\
f* = = =g — (— (4.8)
‘u Ve Vg’
since
a (t\a-l -1
r = - (— and r_ =v (4.9)
F VF VF/ U

can be related to the ratio fl with the aid of Egs. (3.21) and (3.17)a

. Q € \a-—l
£ = afT(l + l/a) | 6@ (4.10)
Introducing t = Excl = Exc/n
a
g = af[ra+ 1/0) ] n~(@-1) (4.11)
and therefore -
£ = aﬁla[l“(l + l/a)] (4.12)
Hence for fl =1.0
) a
£1 = aLI‘(l + l/a):l > 1 (4.13)

The time t* at which the risks ra and r,y are equal which has been pro-

posed as a safe life of opcerationl7 is obtained from Eq. (4.10) with
f' =1

£ = BX_ “'1J @f) " r+1/a) )™ = EX £ Al o"1ﬁ'1[r*(1+1/m)1’°‘

(4.14)
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Since
f—a/a—l I -a/a-1
n 1

the expected time to equal risk of failure

t = EX | fl""/""l a_lja—l[F(l+l/a)]-a (4.15)

For a design with fl = 1 this time t* < Exlc = EX;pj for 2 < a < 4 the
ratio 0.63 < (t*/EXlF) < 0.73. Thus the fatigue sensitivity criterion
f; = 1 produces a time to first failure which differs only slightly from
the time at which the failure risks are equal. This time t* ~ 2/3 EX
can thus be considered as a fair estimate of safe life.

Obviously the consideration of f1 as the constant ratio £q = Ech/
EX1p is only an approximation to the more rigorous approach in which

X and X;p are introduced as random variables so that the fatigue sen-

1c
sitivity factor f; as a quotient of two random variables

£.(x) = xlC/XlF (4.16)

is itself a random variable. It has been assumed, so far that the ex-
pectation Efl is closely enough approximated by the ratio of the ex-
pectations of xlC and X;p. But unless the distribution of fl(x) is
known no probability statement can be associated with the criterion
of fatigue-insensitivity fl(x) = 1.

The density function of the time to the first failure p(Xl) is
given by Eq. (3.6) for any given distribution of times to failure P(x).

Thus, for instance, for the distribution function Eq. (2.5)

. EL(.X_\OL-]' (/v ® @.17)
vF VF/ :

Il

p(XlF) = Pyp (x)

which, for a = 1, becomes

P(X;.) = Py (x) = n 1, Bl (4.18)

<
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The distribution of the quotient £ = (XlC/XlF) is therefore®’

P(f,) = P, (xf.)p, (x)dx =
1 J; i e 1°+1F (4.19)
o a-1 \'4 o]
= 1 - no (= exp {- n L (XN, XN } a X
J; (vF> [VC ) § VF/ (vF) ] (vF/
and
: -— ¢ 2 ZE. / ‘-x— Yy .‘,_F _‘ -x— \

p‘fl) - {)n Vo o \vF> exp {- n L fl (v o <v / J} VF/ (4.20)

The form of the distribution and of the density function can only be
evaluated numerically. This has been done for a = 3,4 and n =3, 20, 50,
200 and 1000 and the distribution functions P(fl) are plotted in Fig. 5
on the scale fl(VF/VC)' However the expectation E{fl] and the variance

o can be obtained in closed form. Thus after some manipulation

Fl

E{fl} = f fl.p(fl)dfl = 51 n'(l'l/a). r(i-1/a) (4.21)
o F

Considering that v = Exc and vF = E}(F[I‘(1+1/'cx.)]-l this expression can be

written in the form
E[fl} =f n _(1-l/a)r(l-l/a).F(1+l/a) (4.22)

of which Eq. (4.5) is an approximation,

The product of the gamma functions in Eq. (4.22) for a = 2, 3 and
4 is, respectively (1.77x0.88) = 1,55, (1.35x0.89) = 1.20 and (1.225x0.91)=
1.10; the approximate values of Table 2 are the closer to the correct
values of Eq. (4.22) the larger the parameter a, For n = 1000 and a = 4
used in the illustration of the procedure the correct ratio is (179/110)=

163, which produces the correct value of N5 Z 3000 cycles or EXSF = 75 hrs.
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The wvariance

2 2 2
°pp = E{f;7} - [E{£ ] (4.23)
Evaluating
@ 2
Bif %) = j; £ %p(e)as, - -55; n 0T () ra-2/a) (4.24)

valid for a > 2. The variance

2
2 [31 n~ =Y/ ok 1m0 ) - [T (1-1/a)]1%}
VF ad

%¢1
(4.25)
_ 2 2I'(1-2/a)
- [E{fl}] { [r(l—l/d)]z l}
The coefficient of variation of Fl is therefore
v { <L {1=2/q 1}1/2 for a > 2 (4.26)

£1 [T(1-1/a)12 ~

which for a = 3 and 4 gives the values Vegp = 0.68 and 0.41. while
these coefficients are rather large, they are associated with scatter
values of fatigue life that are at the upper limit of those observed
in tests of structural parts and therefore higher than those to be
expected for full-scale structures. Moreover the assumption of an
extreme-value distribution of fatigue lives for convenient analysis
in closed form is quite unfavorable in view of the fact that existing
observations can be reasonably well fitted by logarithmic-normal dis-
tribution. Thus it appears that in reality the coefficient of varia-
tion of fl might be smaller than suggested by the above values and that
therefore a design with an expected value 0,2 < fl < 0.4 may produce
structures that can be classified as fatigue insensitive with a suf-
ficiently high probability. Thus, for instance, it appears from Fig.

4 that even under the assumptions made a design with expected E[fl] =
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0.3 for a = 4 and would exceed fl = 1 only with a probability of
about 0,10 and fl = 2 with 0,01,

Obviously in actual design the problem arises whether a fa-
tigue-insensitive design can, in fact, be attained with the ma-
terial used; in other words whether the operational fatigue load
spectrum applied to the structure produces dimensions which are
compatible with those arising from the ultimate load design with
a prescribed probability of failure Ppr. For a given material and
operating conditions such design may not be compatible with con—
ventionally assumed ratios between ultimate and limit load; if, as
a result a fatigue-sensitive design with fl >> 1 has to be accepted
the necessary provisions for fail-safe construction must be made
which may not be unnecessary in a fatigue-insensitive design. The
estimate of the safe life of such a structure with a specified re-
liability must be made on the basis of the distribution function

p(fl). This subject will be dealt with in a future report.
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Fig. 2c Ratio Var xl/(Ex)2 versus coefficient of variation

Vy for x, =0 and Xo = 0.1v for n = 3, 20, 50, 200
and 1000,
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Fig. 3 Minimum life N, as function of mean life N (Ref. 10).
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